Interaction of SPIN90 with dynamin I and its participation in synaptic vesicle endocytosis.
نویسندگان
چکیده
SH3 protein interacting with Nck, 90 kDa (SPIN90) is an Nck-binding protein that contains one Src homology 3 (SH3) domain, three proline-rich domains (PRDs), a serine/threonine-rich region, and a hydrophobic C-terminal region. Previously, we have shown that SPIN90 plays roles in the sarcomere assembly in cardiac muscles and in the formation of focal contacts in HeLa cells. Besides in heart, SPIN90 is also highly expressed in the brain, but its role in the neuronal system is completely unknown. Here, we found that SPIN90 is expressed in the presynaptic compartment in which it binds dynamin I, a key component of the endocytic machinery, and that it participates in synaptic vesicle endocytosis. Pull-down analysis and coimmunoprecipitation proved the associations of SPIN90 with dynamin I through SH3-PRD interaction. Overexpression of SPIN90 or knocking down SPIN90 by small interfering RNA impaired synaptic vesicle endocytosis. We further confirmed by the rescue experiments that the endocytic defects by SPIN90 expression come from its interaction with dynamin I. Exocytosis kinetics was not affected by SPIN90 expression. Together, our findings suggest that SPIN90 could modulate the interactions of dynamin I with other endocytic proteins that cooperate in the coated vesicle formation, thus regulating synaptic vesicle endocytosis.
منابع مشابه
Dynamin I phosphorylation and the control of synaptic vesicle endocytosis.
The GTPase dynamin I is essential for synaptic vesicle endocytosis in nerve terminals. It is a nerve terminal phosphoprotein that is dephosphorylated on nerve terminal stimulation by the calcium-dependent protein phosphatase calcineurin and then rephosphorylated by cyclin-dependent kinase 5 on termination of the stimulus. Because of its unusual phosphorylation profile, the phosphorylation statu...
متن کاملTruncations of amphiphysin I by calpain inhibit vesicle endocytosis during neural hyperexcitation.
Under normal physiological conditions, synaptic vesicle endocytosis is regulated by phosphorylation and Ca(2+)-dependent dephosphorylation of endocytic proteins such as amphiphysin and dynamin. To investigate the regulatory mechanisms that may occur under the conditions of excessive presynaptic Ca(2+) influx observed preceding neural hyperexcitation, we examined hippocampal slices following hig...
متن کاملSyndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein.
The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can b...
متن کاملThe calcineurin-dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis.
Exocytosis of synaptic vesicles is calcium-dependent, with synaptotagmin serving as the calcium sensor. Endocytosis of synaptic vesicles has also been postulated as a calcium-dependent process; however, an endocytic calcium sensor has not been found. We now report a physical association between the calcium-dependent phosphatase calcineurin and dynamin 1, a component of the synaptic endocytic ma...
متن کاملThe phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles.
Synaptic vesicles (SVs) are retrieved by more than one mode in central nerve terminals. During mild stimulation, the dominant SV retrieval pathway is classical clathrin-mediated endocytosis (CME). During elevated neuronal activity, activity-dependent bulk endocytosis (ADBE) predominates, which requires activation of the calcium-dependent protein phosphatase calcineurin. We now report that calci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 41 شماره
صفحات -
تاریخ انتشار 2005